Adaptive Kalman filter – CAN U CONVERT PLEASES
Forums › ProRealTime English forum › ProBuilder support › Adaptive Kalman filter – CAN U CONVERT PLEASES
- This topic has 4 replies, 2 voices, and was last updated 4 weeks ago by Patrick K Templar.
-
-
11/27/2024 at 7:46 PM #240822
https://youtu.be/_abJdz-UEhM?si=UtRva0cNO2hNoKf0 This indicator offers three distinct Kalman filter models, each designed to handle different market conditions:
Standard Model: This is a conventional Kalman Filter, balancing responsiveness and smoothness. It works well across general market conditions.
Volume-Adjusted Model: In this model, the filter’s measurement noise automatically adjusts based on trading volume. Higher volumes indicate more informative price movements, which the filter treats with higher confidence. Conversely, low-volume movements are treated as less informative, adding robustness during low-activity periods.
Parkinson-Adjusted Model: This model adjusts measurement noise based on price volatility. It uses the price range (high-low) to determine the filter’s sensitivity, making it ideal for handling markets with frequent gaps or spikes. The model responds with higher confidence in low-volatility periods and adapts to high-volatility scenarios by treating them with more caution.Adaptive Kalman filter12indicator("Adaptive Kalman filter - Trend Strength Oscillator (Zeiierman)", shorttitle = "Kalman Trend Strength Oscillator (Zeiierman)", overlay=false, precision = 0)//~~}Adaptive Kalman filter - Trend Strength Oscillator123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162Adaptive Kalman filter - Trend Strength Oscillator// This work is licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/// © Zeiierman {//@version=5indicator("Adaptive Kalman filter - Trend Strength Oscillator (Zeiierman)", shorttitle = "Kalman Trend Strength Oscillator (Zeiierman)", overlay=false, precision = 0)//~~}// ~~ Tooltips {string t1 = "Process Noise 1: This is the primary noise factor for the Kalman filter process. A higher value increases the filter’s responsiveness to price changes, but may result in less smooth output. Adjust this based on market volatility and the desired balance between smoothness and responsiveness."string t2 = "Process Noise 2: This is the secondary noise factor for the Kalman filter process. It works in conjunction with Process Noise 1. Increasing this value also makes the filter more responsive but may introduce more noise. Fine-tune this alongside Process Noise 1 for optimal filtering."string t3 = "Measurement Noise: This value defines the amount of noise in the price data, impacting how much the filter trusts the current price series. Higher values will make the filter rely more on past data, reducing responsiveness. Use this to control the trade-off between smoothness and responsiveness in trending or noisy markets."string t4 = "Osc Smoothness: Controls the level of smoothing applied to the trend strength oscillator. Higher values result in a smoother oscillator but may cause delays. Lower values make the oscillator more reactive to trend changes, which can be useful for capturing quick reversals or volatility."string t5 = "Kalman Filter Model: Choose between standard, volume-adjusted, and Parkinson-adjusted Kalman filter models. Volume-adjusted uses trading volume to adapt noise, while Parkinson-adjusted considers price range volatility. Each model impacts how the Kalman filter adjusts to market conditions."string t6 = "Sigma Lookback: Defines the number of bars used to calculate the standard deviation for confidence bands in the Kalman filter. Higher values use more historical data, which can stabilize the filter in trending markets. Lower values make it more responsive to recent changes."string t7 = "Trend Lookback: Sets the period over which the trend strength is calculated. Shorter periods make the indicator more sensitive to recent trends, while longer periods smooth the trend, emphasizing longer-term movement."string t8 = "Strength Smoothness: Defines the level of smoothing applied to the calculated trend strength. Higher values create a more gradual trend strength curve, suitable for identifying persistent trends. Lower values make it more responsive, highlighting shorter-term fluctuations."//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}// ~~ Parameters {//@enum Defines Kalman filter extension modelsenum kf_modelstandard = "Standard"volume_adjusted = "Volume adjusted"parkinson_adjusted = "Parkinson adjusted"//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}// ~~ Settings {process_noise_1 = 0.01//input.float(0.01, "Process Noise 1", minval=0.0, maxval=10000, step=0.01, tooltip=t1, group='General settings')process_noise_2 = 0.01//input.float(0.01, "Process Noise 2", minval=0.0, maxval=10000, step=0.01, tooltip=t2, group='General settings')measurement_noise = input.float(500.0, "Measurement Noise", minval=0.0, maxval=10000, step=2.0, tooltip=t3, group='General settings')R1 = input.int(10, title="Osc Smoothness", minval=2, tooltip=t4, group='General settings')src = close//input.source(close, "Input Source", tooltip='Primary input to filter', group='General settings')selected_kf_model = input.enum(kf_model.standard, "Kalman Filter Model", tooltip=t5, group='Kalman Model Settings')N = 500//input.int(500, "Sigma Lookback", minval=2, step=1, tooltip=t6, group='Additional Settings')N2 = input.int(10, "Trend Lookback", minval=2, step=1, tooltip=t7, group='Trend Settings')R2 = input.int(10, title="Strength Smoothness", minval=2, tooltip=t8, group='Trend Settings')pos_col = input.color(color.lime, title="Trend", inline="style", group='Style Settings')neu_col = input.color(color.blue, title="", inline="style", group='Style Settings')neg_col = input.color(color.red, title="", inline="style", group='Style Settings')ob_col = input.color(color.green, title="OBOS", inline="style1", group='Style Settings')os_col = input.color(color.red, title="", inline="style1", group='Style Settings')bg_col = input.color(color.rgb(87, 130, 194, 90), title="BG", inline="style2", group='Style Settings')//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}// ~~ Indicators {var float filtered_src = navar float trend_strength = na//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}// ~~ Support variables {var Y_diff = array.new<float>()var osc_buffer = array.new<float>()//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}// ~~ Initialize all KF matrices and vectors {var F = matrix.new<float>(2, 2, 0.0)F.set(0, 0, 1.0)F.set(0, 1, 1.0)F.set(1, 0, 1.0)var P = matrix.new<float>(2, 2, 0.0)matrix.set(P, 0, 0, 1.0)matrix.set(P, 1, 1, 1.0)var Q = matrix.new<float>(2, 2, 0.0)matrix.set(Q, 0, 0, process_noise_1)matrix.set(Q, 0, 1, process_noise_1 * process_noise_2)matrix.set(Q, 1, 0, process_noise_2 * process_noise_1)matrix.set(Q, 1, 1, process_noise_2)var R = matrix.new<float>(1, 1, measurement_noise)var H = matrix.new<float>(1, 2, 0.0)matrix.set(H, 0, 0, 1.0)var I = matrix.new<float>(2, 2, 0.0)matrix.set(I, 0, 0, 1.0)matrix.set(I, 1, 1, 1.0)var X = array.from(0.0, 0.0)if barstate.isfirstX := array.from(src, src)if barstate.isconfirmedx1 = matrix.get(F, 0, 0) * array.get(X, 0) + matrix.get(F, 0, 1) * array.get(X, 1)x2 = matrix.get(F, 1, 1) * array.get(X, 1)X := array.from(x1, x2)P := F.mult(P.mult(F.transpose())).sum(Q)array.push(Y_diff, src - array.get(X, 0))R_adjusted = R.copy()if selected_kf_model != kf_model.standard and bar_index > 2if selected_kf_model == kf_model.volume_adjustedmatrix.set(R_adjusted, 0, 0, matrix.get(R, 0, 0) * volume[1] / math.min(volume[1], volume))else if selected_kf_model == kf_model.parkinson_adjustedcurrent_range = high - lowprevious_range = high[1] - low[1]range_ratio = current_range / math.max(previous_range, syminfo.mintick)parkinson_scaled = 1 + range_ratiomatrix.set(R_adjusted, 0, 0, matrix.get(R, 0, 0) * parkinson_scaled)S = H.mult(P.mult(H.transpose())).sum(R_adjusted)K = P.mult(H.transpose().mult(S.inv()))innovation = src - array.get(H.mult(X), 0)diff = K.mult(innovation)X := array.from(array.get(X, 0) + matrix.get(diff, 0, 0), array.get(X, 1) + matrix.get(diff, 1, 0))P := I.sum(K.mult(H).mult(-1)).mult(P)estimate = array.get(X, 0)oscillator = array.get(X, 1)filtered_src := estimatearray.push(osc_buffer, oscillator)if array.size(Y_diff) >= Narray.shift(Y_diff)if array.size(osc_buffer) >= N2A = osc_buffer.abs().max()trend_strength := ta.wma((oscillator / A * 100 ),R2)array.shift(osc_buffer)//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}// ~~ Gradient Coloring Logic {var int num_segments = 10segment_width = 100 / num_segmentsfilled_segments = math.floor(math.abs(trend_strength) / segment_width)osc_color = neu_colif not na(trend_strength)for i = 0 to num_segments - 1if i < filled_segmentsosc_color := color.new(trend_strength > 0 ? pos_col : neg_col, 80 - i * 10)elsebreak//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}// ~~ Plots {oscPlot = plot(ta.wma(trend_strength,R1), color=osc_color, linewidth=3, title="Kalman Trend Strength Oscillator")kalmanPlot= plot(filtered_src, color=osc_color, linewidth = 2, title="Adaptive Kalman Filter", force_overlay = true)UpperBand = hline(70, title="70")midline = hline(0, title="0")LowerBand = hline(-70, title="-70")fill(UpperBand, LowerBand, color=bg_col, title="Background Fill")midLinePlot = plot(0, color = na, editable = false, display = display.none)fill(oscPlot, midLinePlot, 80, 30, top_color = color.new(ob_col, 0), bottom_color = color.new(ob_col, 100), title = "Upper Gradient Fill")fill(oscPlot, midLinePlot, -30, -80, top_color = color.new(os_col, 100), bottom_color = color.new(os_col, 0), title = "Lower Gradient Fill")//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}// ~~ Table for Trend Strength {if barstate.islasttrend_strength_current = math.round(trend_strength)var table trend_table = table.new(position.bottom_center, num_segments + 1, 1, border_color=chart.fg_color, border_width=1, frame_color=chart.fg_color, frame_width=1)for i = 0 to num_segments - 1table_segment_color = i < filled_segments ? color.new(trend_strength > 0 ? pos_col : neg_col, 70 - i * 10) : color.new(chart.fg_color, 100)table.cell(trend_table, i, 0, "", bgcolor=table_segment_color, width=1, height=2)table.cell(trend_table, num_segments, 0, str.tostring(trend_strength_current) + " %", text_color=chart.fg_color, bgcolor=na)//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}// ~~ Tooltips {
string t1 = “Process Noise 1: This is the primary noise factor for the Kalman filter process. A higher value increases the filter’s responsiveness to price changes, but may result in less smooth output. Adjust this based on market volatility and the desired balance between smoothness and responsiveness.”
string t2 = “Process Noise 2: This is the secondary noise factor for the Kalman filter process. It works in conjunction with Process Noise 1. Increasing this value also makes the filter more responsive but may introduce more noise. Fine-tune this alongside Process Noise 1 for optimal filtering.”
string t3 = “Measurement Noise: This value defines the amount of noise in the price data, impacting how much the filter trusts the current price series. Higher values will make the filter rely more on past data, reducing responsiveness. Use this to control the trade-off between smoothness and responsiveness in trending or noisy markets.”
string t4 = “Osc Smoothness: Controls the level of smoothing applied to the trend strength oscillator. Higher values result in a smoother oscillator but may cause delays. Lower values make the oscillator more reactive to trend changes, which can be useful for capturing quick reversals or volatility.”
string t5 = “Kalman Filter Model: Choose between standard, volume-adjusted, and Parkinson-adjusted Kalman filter models. Volume-adjusted uses trading volume to adapt noise, while Parkinson-adjusted considers price range volatility. Each model impacts how the Kalman filter adjusts to market conditions.”
string t6 = “Sigma Lookback: Defines the number of bars used to calculate the standard deviation for confidence bands in the Kalman filter. Higher values use more historical data, which can stabilize the filter in trending markets. Lower values make it more responsive to recent changes.”
string t7 = “Trend Lookback: Sets the period over which the trend strength is calculated. Shorter periods make the indicator more sensitive to recent trends, while longer periods smooth the trend, emphasizing longer-term movement.”
string t8 = “Strength Smoothness: Defines the level of smoothing applied to the calculated trend strength. Higher values create a more gradual trend strength curve, suitable for identifying persistent trends. Lower values make it more responsive, highlighting shorter-term fluctuations.”
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}// ~~ Parameters {
//@enum Defines Kalman filter extension models
enum kf_model
standard = “Standard”
volume_adjusted = “Volume adjusted”
parkinson_adjusted = “Parkinson adjusted”
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}// ~~ Settings {
process_noise_1 = 0.01//input.float(0.01, “Process Noise 1”, minval=0.0, maxval=10000, step=0.01, tooltip=t1, group=’General settings’)
process_noise_2 = 0.01//input.float(0.01, “Process Noise 2”, minval=0.0, maxval=10000, step=0.01, tooltip=t2, group=’General settings’)
measurement_noise = input.float(500.0, “Measurement Noise”, minval=0.0, maxval=10000, step=2.0, tooltip=t3, group=’General settings’)
R1 = input.int(10, title=”Osc Smoothness”, minval=2, tooltip=t4, group=’General settings’)
src = close//input.source(close, “Input Source”, tooltip=’Primary input to filter’, group=’General settings’)
selected_kf_model = input.enum(kf_model.standard, “Kalman Filter Model”, tooltip=t5, group=’Kalman Model Settings’)
N = 500//input.int(500, “Sigma Lookback”, minval=2, step=1, tooltip=t6, group=’Additional Settings’)
N2 = input.int(10, “Trend Lookback”, minval=2, step=1, tooltip=t7, group=’Trend Settings’)
R2 = input.int(10, title=”Strength Smoothness”, minval=2, tooltip=t8, group=’Trend Settings’)
pos_col = input.color(color.lime, title=”Trend”, inline=”style”, group=’Style Settings’)
neu_col = input.color(color.blue, title=””, inline=”style”, group=’Style Settings’)
neg_col = input.color(color.red, title=””, inline=”style”, group=’Style Settings’)
ob_col = input.color(color.green, title=”OBOS”, inline=”style1″, group=’Style Settings’)
os_col = input.color(color.red, title=””, inline=”style1″, group=’Style Settings’)
bg_col = input.color(color.rgb(87, 130, 194, 90), title=”BG”, inline=”style2″, group=’Style Settings’)//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}
// ~~ Indicators {
var float filtered_src = na
var float trend_strength = na
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}// ~~ Support variables {
var Y_diff = array.new<float>()
var osc_buffer = array.new<float>()
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}// ~~ Initialize all KF matrices and vectors {
var F = matrix.new<float>(2, 2, 0.0)
F.set(0, 0, 1.0)
F.set(0, 1, 1.0)
F.set(1, 0, 1.0)var P = matrix.new<float>(2, 2, 0.0)
matrix.set(P, 0, 0, 1.0)
matrix.set(P, 1, 1, 1.0)var Q = matrix.new<float>(2, 2, 0.0)
matrix.set(Q, 0, 0, process_noise_1)
matrix.set(Q, 0, 1, process_noise_1 * process_noise_2)
matrix.set(Q, 1, 0, process_noise_2 * process_noise_1)
matrix.set(Q, 1, 1, process_noise_2)var R = matrix.new<float>(1, 1, measurement_noise)
var H = matrix.new<float>(1, 2, 0.0)
matrix.set(H, 0, 0, 1.0)var I = matrix.new<float>(2, 2, 0.0)
matrix.set(I, 0, 0, 1.0)
matrix.set(I, 1, 1, 1.0)var X = array.from(0.0, 0.0)
if barstate.isfirst
X := array.from(src, src)if barstate.isconfirmed
x1 = matrix.get(F, 0, 0) * array.get(X, 0) + matrix.get(F, 0, 1) * array.get(X, 1)
x2 = matrix.get(F, 1, 1) * array.get(X, 1)
X := array.from(x1, x2)
P := F.mult(P.mult(F.transpose())).sum(Q)array.push(Y_diff, src – array.get(X, 0))
R_adjusted = R.copy()
if selected_kf_model != kf_model.standard and bar_index > 2
if selected_kf_model == kf_model.volume_adjusted
matrix.set(R_adjusted, 0, 0, matrix.get(R, 0, 0) * volume[1] / math.min(volume[1], volume))
else if selected_kf_model == kf_model.parkinson_adjusted
current_range = high – low
previous_range = high[1] – low[1]
range_ratio = current_range / math.max(previous_range, syminfo.mintick)
parkinson_scaled = 1 + range_ratio
matrix.set(R_adjusted, 0, 0, matrix.get(R, 0, 0) * parkinson_scaled)S = H.mult(P.mult(H.transpose())).sum(R_adjusted)
K = P.mult(H.transpose().mult(S.inv()))
innovation = src – array.get(H.mult(X), 0)
diff = K.mult(innovation)
X := array.from(array.get(X, 0) + matrix.get(diff, 0, 0), array.get(X, 1) + matrix.get(diff, 1, 0))
P := I.sum(K.mult(H).mult(-1)).mult(P)estimate = array.get(X, 0)
oscillator = array.get(X, 1)
filtered_src := estimatearray.push(osc_buffer, oscillator)
if array.size(Y_diff) >= N
array.shift(Y_diff)if array.size(osc_buffer) >= N2
A = osc_buffer.abs().max()
trend_strength := ta.wma((oscillator / A * 100 ),R2)
array.shift(osc_buffer)
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}// ~~ Gradient Coloring Logic {
var int num_segments = 10
segment_width = 100 / num_segments
filled_segments = math.floor(math.abs(trend_strength) / segment_width)
osc_color = neu_colif not na(trend_strength)
for i = 0 to num_segments – 1
if i < filled_segments
osc_color := color.new(trend_strength > 0 ? pos_col : neg_col, 80 – i * 10)
else
break
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}// ~~ Plots {
oscPlot = plot(ta.wma(trend_strength,R1), color=osc_color, linewidth=3, title=”Kalman Trend Strength Oscillator”)
kalmanPlot= plot(filtered_src, color=osc_color, linewidth = 2, title=”Adaptive Kalman Filter”, force_overlay = true)
UpperBand = hline(70, title=”70″)
midline = hline(0, title=”0″)
LowerBand = hline(-70, title=”-70″)fill(UpperBand, LowerBand, color=bg_col, title=”Background Fill”)
midLinePlot = plot(0, color = na, editable = false, display = display.none)
fill(oscPlot, midLinePlot, 80, 30, top_color = color.new(ob_col, 0), bottom_color = color.new(ob_col, 100), title = “Upper Gradient Fill”)
fill(oscPlot, midLinePlot, -30, -80, top_color = color.new(os_col, 100), bottom_color = color.new(os_col, 0), title = “Lower Gradient Fill”)
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}// ~~ Table for Trend Strength {
if barstate.islast
trend_strength_current = math.round(trend_strength)
var table trend_table = table.new(position.bottom_center, num_segments + 1, 1, border_color=chart.fg_color, border_width=1, frame_color=chart.fg_color, frame_width=1)
for i = 0 to num_segments – 1
table_segment_color = i < filled_segments ? color.new(trend_strength > 0 ? pos_col : neg_col, 70 – i * 10) : color.new(chart.fg_color, 100)
table.cell(trend_table, i, 0, “”, bgcolor=table_segment_color, width=1, height=2)
table.cell(trend_table, num_segments, 0, str.tostring(trend_strength_current) + ” %”, text_color=chart.fg_color, bgcolor=na)
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}The Adaptive Kalman Filter – Trend Strength Oscillator by Zeiierman is a sophisticated trend-following indicator that uses advanced mathematical techniques, including vector and matrix operations, to decompose price movements into trend and oscillatory components. Unlike standard indicators, this model assumes that price is driven by two latent (unobservable) factors: a long-term trend and localized oscillations around that trend. Through a dynamic “predict and update” process, the Kalman Filter leverages vectors to adaptively separate these components, extracting a clearer view of market direction and strength.
12/03/2024 at 3:54 PM #24103912/05/2024 at 11:19 AM #241141what the matrix use for
12/06/2024 at 3:38 AM #241166can you make this with out the maxtrix
pleases1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859// Simplified without Matrix Operationsindicator = CALL "AFR"[29, 23](close)// User InputsprocessNoise1 = 0.01processNoise2 = 0.01measurementNoise = 500.0oscSmoothness = 10trendLookback = 10strengthSmoothness = 10inputSource = close// Initialize Variables OncestateEstimate1 = inputSource // Initial state (position)stateEstimate2 = 0 // Initial state (velocity)errorCovariance1 = 1 // Initial uncertainty in state 1errorCovariance2 = 1 // Initial uncertainty in state 2// Main LoopfilteredSource = 0oscillator = 0trendStrength = 0For Bar = 1 To LastBar Do// Predict SteppredictedState1 = stateEstimate1 + stateEstimate2predictedState2 = stateEstimate2predictedErrorCovariance1 = errorCovariance1 + processNoise1predictedErrorCovariance2 = errorCovariance2 + processNoise2// Update Stepinnovation = inputSource[Bar] - predictedState1kalmanGain1 = predictedErrorCovariance1 / (predictedErrorCovariance1 + measurementNoise)kalmanGain2 = predictedErrorCovariance2 / (predictedErrorCovariance1 + measurementNoise)stateEstimate1 = predictedState1 + kalmanGain1 * innovationstateEstimate2 = predictedState2 + kalmanGain2 * innovationerrorCovariance1 = (1 - kalmanGain1) * predictedErrorCovariance1errorCovariance2 = (1 - kalmanGain2) * predictedErrorCovariance2// Calculate oscillator and trend strengthfilteredSource = stateEstimate1oscillator = stateEstimate2TrendStrengthArray[Bar] = Abs(oscillator) / Max(ArrayMax(TrendStrengthArray, trendLookback)) * 100trendStrength = WeightedAverage(TrendStrengthArray, strengthSmoothness)// VisualizationIf trendStrength > 0 ThenColor = Rgb(0, 255, 0) // Positive trendElseIf trendStrength < 0 ThenColor = Rgb(255, 0, 0) // Negative trendElseColor = Rgb(0, 0, 255) // Neutral trendEndIfEnd// Return ResultsReturn filteredSource As "Filtered Price", trendStrength As "Trend Strength"12/06/2024 at 10:27 AM #241177i give it a try1234567891011121314151617indicator1 = CALL "AFR"[29, 20](close)// Parametersperiod = 14 // Adjust to the lookback period you need// Your custom indicator (replace with your formula)indicator1 = close - average[20](close) // Example: deviation from a moving average// Calculate the highest and lowest values over the periodhighestValue = highest[period](indicator1)lowestValue = lowest[period](indicator1)// Normalize the indicator to oscillate between 0 and 100oscillator = (indicator1 - lowestValue) / (highestValue - lowestValue) * 100// Plot the oscillatorreturn oscillator as "Oscillator"// Plot the Oscillator -
AuthorPosts